Pinball Switches – Fixing And Adjusting

The Proper Tools

tools
Leaf switch adjustment tools.

The proper tool to use is a dedicated switch adjustment tool.  You can make your own from a section of  3/16″ metal rod – about 7″ long.  Then cut a notch with a cutoff wheel from a Dremel.  Or purchase one from The Pinball Resource, Marco, Pinball Life, or other pinball parts supplier.  

Never use needle nosed pliers.  Just do not do it.  The angle of the tool seems to result in twisting of switches.

While purchasing this switch adjustment tool, also get a flexstone file.

Other tools required are screwdrivers, isopropyl alcohol (not rubbing), Q-tips, thin cardboard (business cards work).  Solder and a soldering iron may be needed if removing or replacing a switch.

Note: Click on most images for a larger photo.

Cleaning the Contacts

Never use a contact cleaner, WD40 on the switches.  Many of these liquids are flammable and the sparking of a switch can cause a fire.

Gold Contacts

Prior to adjusting, it is important to clean the contacts.  For SS and EM pins with gold contacts, it is easy to clean with a Q-tip and isopropyl alcohol.   Isopropyl alcohol is the only exception to the ‘No Liquids’ rule because it quickly evaporates and does not leave a residue. 

Caution: Be certain to not use very much isopropyl alcohol and use only in a well ventilated area.  Follow precautions on the container.

Sometimes there is dirt that does not come off with the alcohol.  In that case, put a thin piece of cardboard between the contacts, push them together and pull the card between the contacts.

Never use a flexstone, file or any other abrasive material on gold plated switches. 

Silver Contacts

With EM games, the power to fire a relay travels through the playfield switches.  These switches have silver contacts. To clean these switches, use a Dremel 443 brush or a flexstone file. Flexstone files can be ordered from pinball supply houses.  400 grit sandpaper or a small metal file can be used, but the Dremel brush or flexstone is better.  We prefer the Dremel 443 brush as it is less destructive.

In addition to the switches located under the playfield and the flipper switches, EM games have switches in the backbox and, usually in the cabinet under the playfield.  Dirt or wear on these switches can lead to malfunctioning games.

For EM silver contacts, they can be cleaned with isopropyl alcohol.  Then insert a flexstone between the contacts, press them together and move the flexstone back and forth.  It is important not to press too hard and bend the leafs as that will cause them to file not parallel to each other.

Tungsten Contacts

The cabinet flipper switches and those at the flipper switches (EOS or end of stroke) handle higher currents, have tungsten contacts  and are designed differently*. Worn or dirty flipper and EOS switches will lead to weak or non-functioning flippers.  They can be filed with a standard metal file, or they may need to be replaced.  A flexstone file used on EOS switches will wear out the flexstone and destroy the file.  

* Except those on newer solid state or Fliptronics flipper systems.  They use gold contacts.

For details on cleaning, filing and adjusting EOS switches, see the section on Rebuilding Flippers.  

Leaf Switch

Switch Components and Proper Positioning

The most common switch in games is the leaf switch.  It is used in pop bumpers, roll over lanes, stationary targets, star rollover buttons, sling shots, etc.  The key to making them work properly are to clean the contacts and to adjust them the proper distance apart.

To understand how a leaf switch works, it is necessary to understand the components and what they do.  There are two (or more) flexible leaf‘s (also called switch blades).  Each of these has a contact.  There is usually one or more stationary blades (or dampening blade) that are not flexible.

The longest flexible leaf is the one that moves when the pinball hits.  It needs to be positioned against what is moved by the pinball (rubber ring, target, button, pop bumper ring, etc.).

 The other shorter flexible leaf is stationary until the moving long leaf hits this short leaf.

Mangled leaf switch
Mangled and improperly adjust leaf switch.

The thick stationary blade (dampening blade) holds the short flexible leaf in a fixed position and keeps the short flexible leaf from swinging around or dampens the movement.

The next picture shows a mangled, improperly adjusted, leaf switch.  This sort of twisted switch usually occurs when someone uses the wrong tool and adjusts the switch at the wrong point.  

Plus, the shorter leaf should always be adjusted hard against the thick stationary (dampening) blade.  Here, the shorter leaf is ‘swinging in the wind’. The purpose of the stationary blade is to hold the second shorter flexible blade in a fixed position.  That allows the longer leaf to be positioned as close as possible to the shorter leaf, without the short leaf bouncing around causing false hits.

Leaf switch adjusted
Proper adjusted leaf switch for a rollover star.

The next picture in this section shows the shorter flexible leaf properly bent against the thick stationary (dampening) blade.  Done this way, the shorter leaf will stay in one position, while the longer leaf is moved by the action of the pinball.

This switch is used under a star rollover button.  The longer switch acts as the only spring, pushing up the rollover star.  The shorter flexible leaf is bent against the thick stationary blade.  The thick stationary blade holds the shorter flexible leaf in position.  

In the next photo, a lane switch is properly adjusted.  When the ball rolls through the out lane, the ball pushes a lever down against the switch.  The long flexible leaf moves down and hits the short flexible leaf.

Because the short flexible leaf is bent against the heavy stationary blade, the two contacts can be adjusted close together without fear that machine activity will cause enough bouncing for the switch contacts to hit.

switch parts identification
Properly adjusted lane switch.  Short flexible leaf contacts the stationary (dampening) blade.  The long flexible leaf pushes up the lever above the playfield. Adjust the stationary blade for the correct gap between the contacts.

Adjusting the Switch Leafs

Target switch
Adjusting a target leaf switch.

Generally, the leafs should only be bent with the leaf switch adjusting tool and the bending should only be done near where the ‘sandwich’ is located and held in place by the two screws. The rest of the leaf should remain unbent and straight – no curves or angles.

If there is a thick dampening stationary blade and a flexible leaf together, generally they are bent together.  

When the flexible leaf is bent away from the thick stationary blade, it can be difficult to bend only the flexible blade.  Try using your tool on the flexible leaf, only.

Here is a star rollover being adjusted for the proper distance from the long flexible leaf.  Note that in this application, the long flexible leaf must be bent up as it is the ‘spring’ pushing up the roll over button.

Roll over button switch.
Adjusting the roll over button switch.  A careful look at the short flexible leaf shows it is not quite straight indicating that it was improperly bent in the past.
Contact in the switch.
Star roll over switch being pressed down. Note that the two contacts are touching.

Star roll over switches are particularly difficult to get right.  The contacts have to be as close as possible so that a fast roll over by the pinball registers with the game.  Using the thick stationary blade properly to set the gap, the two contacts can be quite close together without the switch ‘bouncing’ and causing false points.

Other Rollover Switch Adjustment
Rollover
Rollover component removed from a playfield.

Rollover leaf switches have another component: the part above the playfield.  When the pinball moves through a rollover, a small wire lever is pushed downwards against the leaf switch.  If this is not adjusted properly, the leafs can be adjusted correctly, but the switch still does not activate.  

It is pretty easy to use the switch adjustment tool to bend the wire so that it sticks up further into the playfield.  But be careful as some of these are meant to allow the ball to move in either directly.  If the wire is bent improperly, the pinball may not be able to move ‘against’ the switch.

Pop Bumpers

Pop bumper
Pop bumper switch. White plastic ‘spoon’ attached to the switch. Tip from the pop bumper skirt points down.

The most difficult leaf switch to adjust properly are the pop bumper switches.  Too close and the pop bumpers will activate without a pinball hitting it.  Too far apart and a the game has a dead pop bumper.

First, clean the contacts.  Then, most importantly, loosen the screws holding the switch and move the switch so that point coming down from the skirt is in the center of the ‘spoon’.  If it is off center, the pop bumper will work when the ball hits one side of the pop bumper, but not the other.  To make this easier to see, darken the end of the skirt point with a black sharpie.

Then adjust the switch in the same manner as the rollover switch.

Note that sometimes the plastic ‘spoon’ gets worn and should be replaced.

Stationary Targets

 

Stationary target
Stationary target
Stationary target
Stationary target.

Stationary targets are another type of leaf switch.  This one has two flexible leafs and two stationary blades.  It is important that the flexible leafs be against the stationary blades to hold everything from bouncing.

Sometimes we find it easiest to adjust these switches by removing them from the playfield.  But, on occasion, they are adjusted perfectly, but when reinserted into the playfield, the hole pushes the target back and causes the switch to be stuck closed.

EOS Switches

EOS (End of Stroke) switches are another type of leaf switch used on flippers and some pop bumpers.  Adjusting them is covered in detail in the Rebuilding Flippers section.

Microswitches

Microswitch
It is possible to remove that entire wire and tab assembly and move it to a new switch by putting a small screwdriver under the ‘ear’ on the microswitch body.

Newer pinball machines have done away with most open leaf switches.  These microswitches stay clean and are more reliable.  However, they cannot be repaired or cleaned.  When they do not work, it is usually because the wire above the playfield is bent.  That can be adjusted just like in the rollover switch (above).  But if they do not work, they generally should be replaced (or maybe not – see note below).

When activating a microswitch, listen for a faint ‘click’.  If not there, the microswitch might be broken.  But the only certain test is to use a DVM and check resistance.

Stern VUK microswitch
VUK microswitch used in a Stern pinball machine

As with all non-working switches, a broken wire or open diode can also cause a failed switch and should be checked.

When ordering a new switch, sometimes it is possible to order the ‘naked’ switch and move the old switch attachment to the new one.  

Microswitches
Two micro switches. Both can be adjusted by bending the wire.

Here are two different micro switches.  Both can be adjusted by bending the wire or tab coming off the switch with a switch adjusting tool.  

The smaller of these two switches are commonly used in Stern ball troughs.  Both of these switches are usually in a switch matrix and needs to have a diode installed.  

Note:  Michel_K17 has come up with a way of ‘fixing’ these switches that is an option, instead of replacing. This is great for those of us that just hate throwing stuff out.

Opto Switches

Optos
Optos. Note the transmitter and receiver.

Opto switches are switches are ‘electric eyes’ that use LEDs instead of a physical connection.  In theory, they are more reliable.  Unfortunately, they burn out and get dirty.

If an opto is not working, or if it is flaky and unreliable, it could be because it is dirty.  Clean it with a Q-tip and isopropyl alcohol. 

Under the playfield optos
Optos on an under the playfield ‘subway’.

Most of the time, optos stop working because the transmitter (light source) burns out in a 20+ year old pinball machine.  The optos used in Williams pinball machines are UV and not visible by the naked eye.  However, it is possible to see if the transmitter is working if a camera can be aimed directly into the transmitter – not off to the side.  Note: Some cell phone cameras can ‘see’ this UV light but others may not.

Newer Stern pinball machines use optos that are visible to the naked eye.

Some Williams pinball machines use optos in the cabinet flipper switches.  These can be cleaned for reliability.

These flipper opto switches can be replaced with leaf switches used in Williams Fliptronics games.

Optos
Optos like these are in places where the pinball moves through a tunnel under the playfield or a clear plastic ramp.

If replacing the optos, it is suggested to replace both the transmitter and receiver to insure that they are both on the same wavelength.  It is also possible to purchase the raw LED from Great Plains Electronics, unsolder the burned out LED and solder in a new one (see below).

Alignment may be an issue with optos.  Sometimes it may be necessary to loosen the screws holding the optos and move them slightly to get optos to work.

A working UV opto ‘seen’ by a digital camera.

Optos are usually plugged into separate opto boards usually located under the playfield.  The opto board supplies power to the transmitter and converts the information from the receiver for use by the computer in the switch matrix.

The picture shows a glowing UV opto transmitter as seen through a camera that is sensitive to UV.  Most iPhones cannot ‘see’ UV light.

Slotted Optos
slotted opto boards
The new board is installed at the top.

‘U’ shaped opto housing are used in many specialty situations.  These can include drop targets, the infamous Twilight Zone clock, as well as game specific mechanisms.  

They are especially hard to clean because of the narrow slot, but usually a Q-tip with isopropyl alcohol can be squeezed in there.  But usually, there is not an option other than to replace the board.  The LED within the housing cannot be replaced.  It maybe possible to obtain the LED/transmitter housing and replace that part on the board.   

Note that some of these boards contain other components that may fail.  Any transistors are especially suspect.  Resistors are unlikely to fail.

Fixing Non-working Optos

For most optos, there are two components that need to be working: 1) the transmitter and receiver, and 2) the opto board.

For the purposes here, we are going to focus on repair and replacement of the opto transmitter and receiver.  The boards can be repaired, or replaced.

 

Replacing Optos

In most cases, it is wise to replace 20+ year old optos, even if they appear to be working.  We recently completed a playfield replacement for a Williams WPC Indiana Jones.  Since we had everything apart, we decided to replace all of the optos.

When replacing the optos, there are three options: 1) Replace the raw opto, 2) Replace the circuit board that holds the opto, or 3) replace the housing, circuit board and opto.

Option #1 is the least expensive.  Raw optos, which are LEDs, are cheap.  There are only two leads that must be unsoldered to remove it.  The only trick is that they must be oriented in the proper direction (see photos below).   For example, the Williams 6 ball trough opto boards are roughly $20 – $25.  But the individual components (QED123 for the transmitter, and QSD124 for the receiver on most WPC pins) are only $0.40 – $0.50 each.  So the transmitters and receivers can all be replaced for $4.80.   And, if you are really feeling lucky, try replacing just the transmitters for $2.40. 

Not all raw optos are readily available, so you may have to do a little searching to come up with those that are more difficult to find.

We went the small circuit board route.  At $2.25 each or $4.00 for a pair, that is a small penalty vs. the $0.40 x 2 for the raw components.  But we saved the old boards and installed new raw LEDs in them for parts.

It is crucial to insure that the same wire is connected to the same position (see ‘Positioning to Move Wires’, above).   We remove the old board, install the new one, then solder the wires one at a time to check that they are soldered to the right place.  The transmitter have pads clearly marked ‘K’ and ‘A’, while the receiver has pads marked ‘E’ and ‘C’.

We usually clip off the old end of the wire, strip a new short part of the wire, tin the wire and the pad on the opto, then put them together and heat. 

Replacing the Raw Optos

Replacing the raw optos, the LED and photo diode located on each board is easy.

diode lead orientationThe leads are close together, so just touch both at the same time with a hot soldering iron and lift out the old diode.   Then clean out the holes, usually with a solder sucker, until the holes are completely clear.

Insert the new ones (see the photo for the correct orientation), solder and then clip off the leads.  All done.

Opto boards with the old LEDs and photo transistors removed.

Note that the darker LED is the photo diode – the receiver.  This is the Williams WPC opto receiver board and the part number is QSD124, a NPN photo transistor. In the original board, there is a drawing of a ‘tab’.  The raw diodes we received do not have a tab.  Instead, it has a flat side.  The flat side is the shorter ‘E’ lead which should be positioned towards the ‘tab’ on  the board.

The lighter color diode is the transmitter QED123 infrared phototransistor used in the Williams WPC optos.  It has a flat side.  The flat side matches up with the board flat side drawing.  The shorter lead, ‘K’ (cathode), goes into the left hand hole.

Note:  It is crucial that the new opto & receiver be installed perfectly flat to the board, or they may not align.  Since this can take three hands, we usually solder one lead.  Then we go back and reheat that one lead while pushing the LED flat against the board, holding it there until the solder cools. 

New optos.

This is the same procedure for ball trough opto boards, except that there are several transmitters on one board, and the same number of receivers on the other.   While it is the best idea to replace both the transmitters and receivers, we frequently try to cheat and just replace the transmitters.  If that does not work, then go back and replace the receivers.

Note that other games use different diodes and their leads might be different orientation, especially for the photo transistor.  For example, some Stern, Sega and DE optos are MV8114 (equivalent to MT5000UR and TLRH180P) which is used for both the transmitter and receiver.  This part is obsolete and getting harder to find.   

Some games use ‘slotted’ optos.  Those have the transmitter and receiver in the same housing and must be replaced together.  The slotted optos used in some WPC games (the QVE11233.0086) have different dimensions and higher current capabilities and maybe difficult to find.  However, DE/Sega/Stern slotted optos can be relatively easy to find.  These are also used on some Williams boards. 

slotted opto
Slotted Opto (Pinball Life)

If the correct part can be located, replacement is fairly easy and far cheaper than a new board.  Note that four leads will have to be unsoldered and, once again, correct orientation is crucial.  And it must be installed perfectly flat against the board.

For those wanting detailed technical information on the Williams slotted optos (notably used in the Twilight Zone clock), please see this excellent thread

Reed or Eddy Switch

A few games use a reed or eddy switch.  It is a sealed box that is magnetic and senses the iron in a pinball.  They are completely sealed.  Other than checking the wiring and plug, there is nothing that can be done to clean or repair these switches.

Comments

Comments, including suggestions, improvements, errors, etc. are welcome (see below).

If you have a specific question about your game that does not directly apply to adjusting switches, please see our FAQ section.

5 thoughts on “Pinball Switches – Fixing And Adjusting”

  1. Can switches, like leaf switches, be salvaged from older em machines to replace switches from a machine from another decade? I have a 1970’s gottlieb em. I bought a back box from a 1950’s era Bally on a whim. I wanted to frame the backglass. All the switches are still in the older back box., I was thinking of keeping some of the switches if they can be used again.

  2. Absolutely those switches can be reused. People do that all the time.
    We are restoring a 1957 Williams Baseball game. One of the leafs on a relay are broken off and going into our supply of old switches, we should be able to replace it.
    But care needs to be taken to use the same type of switch. Higher current replacement leafs, usually made of tungsten, must be replaced with tungsten, and silver with silver, etc.
    If you have the room, keep as many as possible. And please do not throw any out. Sell any ones you do not want to help keep these old machines alive.

  3. I’m curious if you know where I could find a leaf adjustment tool like the red one in the photo. I have one that I love but I fear it getting lost and want to have another.

    1. We wish we knew. That red tool is our favorite as it is more durable than the other styles. We have had it for decades and think that we inherited it from a late father or father-in-law of one of the group.
      We suspect that it was a ‘make it yourself’ tool. We think it was a un-slotted tool and the slot was cut, perhaps using a type of band saw with a thin blade.
      That switch adjustment tool is highly valued.

      1. I took a pic of this tool that is from an old man’s soldering kit. It has a name melted into it. “HYCON ENG 33”. Im just saying that it is specific to being a tool of some e repair tradesperson and not a mod on to a random implement. I learned a thing or two by your articles,thank you.
        The odd connection is photo-google lens. Your pic pulled out of the massive, cavernous data acreage of these interwebs.

Leave a Reply

Your email address will not be published. Required fields are marked *